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 Abstract 

 This paper introduces a sophisticated 
 computational technique for optimal art placement 
 within architectural environments, leveraging the CGAL 
 computational geometry library. The methodology 
 involves calculating the Minkowski sum of a floor plan to 
 understand spatial geometry, followed by Constrained 
 Delaunay Triangulation for structuring the space into 
 manageable units. This foundation allows for strategic 
 placement of simulated viewer points within the 
 environment, with a focus on maximizing visibility and 
 enhancing spatial interaction. The algorithm's 
 robustness in handling visibility calculation represents a 
 novel approach in the field of architectural optimization, 
 offering a quantitatively driven, efficient solution for art 
 placement. 

 Motivation 

 Previous studies and projects have focused 
 on analyzing floor visibility through heatmaps, but 
 there has been a lack of emphasis on wall visibility. 
 This project addresses this gap by exploring 
 optimal art placement, targeting walls within 
 architectural spaces such as museums and homes. 
 The primary goal is to provide actionable advice on 
 where to place art to maximize its visibility. By 
 focusing on wall surfaces, the project seeks to 
 enhance the aesthetic and cultural value of spaces, 
 offering museums and homeowners a novel, 
 data-driven approach to art display and spatial 
 design. 

 Related Work 

 Introduction 

 The study of visibility within architectural 
 spaces is a nuanced intersection of computational 
 geometry, architectural theory, and spatial 
 analytics. Historically, this research has gravitated 
 towards analyzing floor space visibility, employing 

 mathematical models and simulation techniques to 
 understand and optimize spatial dynamics. These 
 methodologies have evolved, contributing 
 significantly to both theoretical and practical 
 understanding of spatial visibility and its 
 implications in architectural design. 

 “From isovists to visibility graphs” 

 Turner et al.'s architectural paper on 
 isovists represents a cornerstone in visual analysis. 
 Focusing on floor space 
 visibility, their 
 methodology utilized 
 randomized point 
 placements within spatial 
 confines to generate 
 isovists—areas visible from 
 a fixed point in space. This 
 approach not only 
 highlighted the potential for spatial analysis but 
 also informed our method's aspect of observer 
 simulation. Their work's visual results, as 
 illustrated in the figure, showcase the depth of 
 spatial visibility analysis possible with such 
 methodologies, wherein each point computes an 
 area visible to it, referred to as an “isovist polygon.” 

 “Beyond Two Dimensions” 

 In "Beyond Two Dimensions," Varoudis and 
 Psarra expanded the scope of spatial visibility 
 analysis into the three-dimensional realm. Their 
 approach underscored the complexity and potential 
 of 3D spatial analysis, particularly in multi-level 
 architectural environments. However, 
 acknowledging the general predominance of 2D 
 floor plans in architectural and design work, I opted 
 to retain a 2D approach for broader practicality and 
 accessibility. 



 The intricate visibility patterns captured in 
 their 3D models are depicted in the figures above. 
 As you can see, spacial visibility is computed based 
 on staggered, non-random nodes. These nodes 
 occupy places in three dimensional space, and are 
 colored based on their visibility – red being most 
 visible. 

 Project Divergence: 

 This project represents a significant 
 divergence from these foundational studies by 
 shifting the focus to wall visibility, an aspect often 
 overlooked in traditional visibility analysis. 
 Employing advanced computational geometry 
 techniques, my method emphasizes the 
 optimization of art placement, enriching the 
 aesthetic and functional value of architectural 
 spaces. This approach moves beyond conventional 
 visibility graph techniques, offering a 
 geometry-driven, innovative perspective on spatial 
 visibility and its application in art placement within 
 environments – museums and homes in particular. 
 The program is designed to take in an input of 
 2-dimensional floor plan data, the output a 
 heatmapping of viable wall space. 

 Implementation 

 The computational process for this project can be 
 divided into four main steps: 

 1. Minkowski Sum of Input Floor Plan: 

 The first step involves taking the Minkowski 
 sum of the input floor plan with a small square, 
 adding a border around each wall. This border is 
 crucial for displaying the heatmap in later stages. 

 See the figures above for the before (  left  ) 
 and after (  right  ) of the Minkowski sum step, as it 
 takes the input floor plan and adds a buffer around 
 it to create a thicker area to display the heat map 
 upon. This sum will then be segmented and 
 colored, and the input floor plan will be overlaid to 
 allow for easy interpretation of the results. 

 1.1: Bugs and Limitations 

 The reasoning behind the small square is 
 that it creates a fairly consistent and simple box 
 around the input floor plan. I had attempted to use 
 other shapes (a star and circle), but they created 
 difficulties with regard to the result map and 
 overcomplicated the shape of the final sum. More 
 shapes could be explored, but through my trial and 
 error, I found that the square gave the best results. 

 2. Constrained Delaunay Triangulation: 

 This Minkowski sum from step one is then 
 triangulated via the Delaunay Triangulation 
 algorithm. The constraints allow for marking of the 
 appropriate faces related to the wallspace (  yellow  ) 
 in the diagram, so that excess triangles 
 representing walkable floor space can be ignored. 
 This can be seen in the associated images, where 
 yellow represents heatmap area, and white is empty 
 room. 



 The triangulation process is enhanced with 
 a user-defined "precision" argument. This 
 parameter controls the triangulation density, with a 
 default value of 0 leading to standard triangulation 
 and higher values increasing triangle numbers. The 
 improved strategy involves subdividing edges of the 
 sum for each precision level, which effectively 
 increases triangle counts while maintaining 
 visibility integrity. Refer to the figure above for 
 precision 0 (  left  ) and 1 (  right  ) triangulation visuals. 
 As you can see, the triangle count is multiplied 
 considerably. 

 2.1: Bugs and Limitations 

 When considering implementation for the 
 precision variable, I had attempted a number of 
 other techniques. In order to create meaningful 
 triangles, they must have at least two points on the 
 edge of viable wall-space, as two points must be 
 visible to a person to deem it a visible chunk of wall. 
 My initial attempt at created more triangles 
 involved cutting each triangle into four triangles, in 
 a Serpinski pattern. This, however, resulted in one 
 triangle encapsulated by three triangles – thus it 
 was impossible for that internal triangle to be 
 visible and resulted in useless triangles. 

 In order to mitigate this, the precision 
 parameter instead designates the number of excess 
 points to add to an edge. That is, for each increase 
 in precision, each edge  of the Minkowski sum is 
 doubled (by adding and connecting the midpoint to 
 the source and target vertex of each edge). This 
 results in more triangles, which – most importantly 
 – still border the edge of the heatmap. 

 3. Placement of 'People': 

 Random two-dimensional points, 
 representing 'people', are placed within the open 
 floor space. The placement adheres to either white 
 noise or blue noise patterns, based on user input. 
 White noise is purely randomized noise, wherein 
 the x and y coordinates are fully random when 
 placing the point. Blue noise is the same, except it 
 restricts point placement by ensuring each new 
 point is at least a set distance away from others. 

 Above is a comparison on white noise (  left  ) 
 and blue noise (  right  ) distributions in an example 
 floor plan. As you can see, the white noise results in 
 clusters (  circled  ), which are unrealistic for 
 simulating a crowd of people. This overlapping, 
 implying individuals occupying the same physical 
 space, is impractical and not representative of 
 real-world scenarios. Blue noise still allows for 
 randomized placement of individuals, but within a 
 certain distance (  epsilon  ) that designates the 
 minimum space between two people. This “socially 
 distanced” model more accurately mimics the 
 placement of people in real life. 

 3.1: Bugs and Limitations 

 In order to accurately distance people, an 
 arbitrary constant of 0.1 (correlating to 0.1 meters 
 based on the scale of the floor plans) was deemed 
 an appropriate minimum spacing between 
 individuals – not exactly comfortable, but it can 
 emulate a crowded and busy space quite well. 

 While epsilon could be an input argument, 
 this led to infinite looping in testing. If you 
 designate epsilon to be too high of a number, and 
 ask it to insert a high enough number of people, 
 then it can fully cover the useable space available 
 and leave no room left to place the remaining 
 points. This can be fixed by instead replacing the 
 people and epsilon inputs with a density input, but 
 for the sake of testing and exploring various results 
 it was simpler to control for epsilon and allow users 
 to specify the number of people instead. 

 4. Visibility Calculation and Heatmap Generation: 

 Each person's viewpoint is analyzed to 
 determine visible space. For every point in the 



 people list, it is checking for visibility against each 
 triangle. For a single triangle, it checks if each 
 vertex is visible. That triangle is deemed visible if at 
 least two of the three vertices are visible. When 
 checking visibility of a vertex, a line segment is 
 created between the person and the vertex. If the 
 segment does not intersect any lines on the input 
 floor plan, then line of sight is established. 

 The visibility score of each triangle is then 
 normalized and used to generate a heatmap, 
 coloring triangles from green (  highly visible  ) to red 
 (  low visibility  ) with non-visible triangles colored in 
 black. This heatmap (  above  ) guides the optimal 
 placement of art based on how many people can see 
 a given wall. 

 During computation, these scores are stored 
 in a map, mapping each triangle’s Face Index in the 
 surface mesh to a float (score). Score will go up a 
 single point for each person that can see the 
 triangle, and a maximum, minimum, and average 
 score is computed during the process. 

 4.1: Troubleshooting 

 Some apparent “issues” can be seen with the 
 output graph. Specifically, that triangles can cross 
 through an entire wall segment – the concern here 
 being the possibility for false positives. However, 
 this is a non-issue. Since two vertices must be 
 visible, a triangle is green only if its visible edge can 
 be seen. Thus, when interpreting the results, one 
 can ignore the skinny point that extends from the 
 triangle across a wall. Understandably, this is not 
 ideal and can be improved upon. I explored a 
 possible solution regarding intermediate points 
 within the wall-space, but these calculated spots 
 weren’t always accurate. Another possible avenue to 
 remedy this could involve tossing out triangulation 
 all together in favor of say voronoi diagrams – but 

 the decision to use triangles simply came down to 
 preference. 

 It is a concern that exterior walls are visible 
 as well. This is due to the placement of people, 
 where some make it outside the walls. In testing, I 
 made some attempts at remedying this – but 
 ultimately deemed trivial for the time being. 

 Technology 

 This program was written in C++, 
 leveraging CGALs draw function to display the 
 results. 

 ●  CGAL’s Polygon 2 was utilized to represent the 
 input floor plan. 

 ●  Polygon 2 with holes was used to generate hte 
 Minkowski sum 

 ●  A Constrained Delaunay Triangulation 
 datastructure was then created from the sum. 

 ●  A surface mesh data structure was then used to 
 display the triangles in color. 

 Results 

 The results yielded from this program were quite 
 promising, and displayed exactly what I had 
 intended it to do. There is a sizeable variance on the 
 output given the different parameters and 
 arguments for the program, as well as the nature of 
 randomization. I will detail a few of the most 
 significant, and discuss the pros and cons of each, 
 as well as their accuracy and usefulness. 

 The Precision Argument 

 Let us discuss the results with regard to change in 
 the precision variable: 

 This figure (  above  ) displays the results for 
 two runsusing 100 people placed over white noise, 
 with two different levels of precision. The results 



 for a precision level of 0 (  left  ), or no further 
 triangulation, can drastically oversimplify the room 
 and give very uninformative results. 

 Using a preciiosn level of 2 (  right  ) gives 
 much more specific results. The result is segmented 
 further and thus is more informative and specific. 

 noise  people  precision  max vis  min vis  avg vis 

 white  100  0  2  77  30.24 

 white  100  1  2  76  32.22 

 white  100  2  2  78  33.50 

 In the table above, which shows the varying 
 outputs among these results, it can be gleaned that 
 the results are approximately the same. However, 
 as we know from the ouput, higher precision results 
 in more accurate results, and it can be assumed that 
 the average visibility is more accurate for higher 
 levels of precision. Note that the numbers are 
 normalized to a visibility%, or the percentage of 
 people simulated that can see a given triangle. 

 Altering the level of precision allows for 
 more specificity in the resulting heatmap, giving 
 more informative and fine-tuned answers. 
 Accordingly, for the example output figures above, 
 it would be optimal to place art in the center 
 (green) area of this room. While they all indicate 
 this, the higher precision output shows a more 
 highly localized and pinpointed result. As it is clear 
 the higher precision level is better, let us control 
 our precision to 2 for the remaining results. 

 The People Argument 

 This figure shows the importance of the 
 “people” variable. While we are using blue noise 
 and precision level two, it only represents visibility 

 from three individuals. Due to the nature of 
 randomization, such a small sample size results in 
 very skewed results. As such, for optimal coverage, 
 it is desirable to use a large number of people. 

 Strong Results 

 Testing for the usefulness of blue noise over 
 white noise can only be shown in theory, as the 
 resultant output is nearly indiscernable, and only 
 the numerical data is altered. However, as blue 
 noise is more accurate to the placement of people in 
 theory, then I’ve deemed it more useful in making 
 accurate and ultimately better results. 

 Thus, as discussed, a more accurate and 
 useful result can be achieved by maximizing the 
 precision variable, maximizing the number people 
 within a tolerable range given an epsilon of 0.1, and 
 placing them via blue noise. 

 Above is a theoretically optimized result for 
 a classroom floor plan – generated with precision 
 level two, placing 400 people via blue noise. An 
 interesting thing to note is that, given the simple 
 geometry of the classroom, most walls in the larger 
 area are approximately equally viable (76.5%). In 
 this scenario, a possible extension to mitigate this 
 and increase the usefulness of the program would 
 be to overlay the normal scores of each 

 Conclusions 

 In summary, this project took about a three 
 weeks of on and off work. The trajectory of the work 
 changed multiple times, as I researched various 
 possible technologies to achieve what I wanted. The 
 results are quite promising, and offer exactly what I 



 wanted them to, but that is not to say they are 
 perfect by any means. 

 My decision to use Minkowski sums to 
 create a buffer is not something that has been done 
 in this specific type of visualization graphing. 
 Furthermore, as previously mentioned, the use of 
 triangulation of voronoi diagrams was an equally 
 interesting decision. As such – due to my 
 unorthodox approach – there are several avenues 
 for improvement and future work in this field. 

 Future Work 

 Usability 

 A core focus of this project was usability. 
 The simplicity of using 2D floor plans allows for 
 quicker input and results. This decision was made 
 based on the accessibility of modern floor plans to 
 the public, promoting the use of this software over 
 one that considers three-dimensional data input. 
 This leads into the first possible extension, the 
 interpretation of floor plan imagery for more 
 efficient computation. That is, the ability to upload 
 an image of your floor plan so as to avoid manual 
 input. Incorporate image scanning would yield way 
 more accurate input data as well, not to mention be 
 more efficient use. 

 Higher Dimensions 

 As referenced in the architecture paper by 
 Varoudis and Parra on higher dimensional space 
 analysis, 3-dimensional viewpoint calculations can 
 prove quite helpful for interpreting visibility. This 
 extension would allow for a number of things, 
 namely higher accuracy, precision, and more 
 realistic viewpoint simulation. By rendering in 
 three dimensions, certain parts of a wallspace 
 which may be obscured at one height level, may not 
 be at another. This cannot be accounted for in a 
 two-dimensional model. However, as previously 
 stated, 3D floorplan data is not readily available. 

 Optimization 

 Sticking with the current implementation, it 
 would be interesting to see an alternative approach 

 involving different noise types, and different 
 segmentations for heatmap generation. It is also 
 possible to make use of raw pixel data instead of 
 triangles. This would lead to a higher computation 
 cost, but ultimately more fine-tuned results. This 
 approach is inspired from the work of Turner et. al, 
 where pixelated data provides highly accurate and 
 localized visibility data. 

 Wrapping Up 

 In conclusion, this project offers a new approach to 
 art placement in architectural spaces, utilizing 
 computational geometry. By integrating Minkowski 
 sums, Constrained Delaunay Triangulation, and 
 visibility calculations, this paper provides an 
 effective method for improving art visibility. This 
 work bridges a gap in spatial analysis, suggesting 
 potential areas for further development, such as 
 three-dimensional analysis and automated data 
 input. The project melds computational techniques 
 with architectural design, contributing useful 
 insights and tools for enhancing aesthetic 
 experiences in built environments. 
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