
 Optimizing Art Placement using
 Minkowski Sums and Delaunay Triangulation

 Thomas Bird

 Abstract

 This paper introduces a sophisticated
 computational technique for optimal art placement
 within architectural environments, leveraging the CGAL
 computational geometry library. The methodology
 involves calculating the Minkowski sum of a floor plan to
 understand spatial geometry, followed by Constrained
 Delaunay Triangulation for structuring the space into
 manageable units. This foundation allows for strategic
 placement of simulated viewer points within the
 environment, with a focus on maximizing visibility and
 enhancing spatial interaction. The algorithm's
 robustness in handling visibility calculation represents a
 novel approach in the field of architectural optimization,
 offering a quantitatively driven, efficient solution for art
 placement.

 Motivation

 Previous studies and projects have focused
 on analyzing floor visibility through heatmaps, but
 there has been a lack of emphasis on wall visibility.
 This project addresses this gap by exploring
 optimal art placement, targeting walls within
 architectural spaces such as museums and homes.
 The primary goal is to provide actionable advice on
 where to place art to maximize its visibility. By
 focusing on wall surfaces, the project seeks to
 enhance the aesthetic and cultural value of spaces,
 offering museums and homeowners a novel,
 data-driven approach to art display and spatial
 design.

 Related Work

 Introduction

 The study of visibility within architectural
 spaces is a nuanced intersection of computational
 geometry, architectural theory, and spatial
 analytics. Historically, this research has gravitated
 towards analyzing floor space visibility, employing

 mathematical models and simulation techniques to
 understand and optimize spatial dynamics. These
 methodologies have evolved, contributing
 significantly to both theoretical and practical
 understanding of spatial visibility and its
 implications in architectural design.

 “From isovists to visibility graphs”

 Turner et al.'s architectural paper on
 isovists represents a cornerstone in visual analysis.
 Focusing on floor space
 visibility, their
 methodology utilized
 randomized point
 placements within spatial
 confines to generate
 isovists—areas visible from
 a fixed point in space. This
 approach not only
 highlighted the potential for spatial analysis but
 also informed our method's aspect of observer
 simulation. Their work's visual results, as
 illustrated in the figure, showcase the depth of
 spatial visibility analysis possible with such
 methodologies, wherein each point computes an
 area visible to it, referred to as an “isovist polygon.”

 “Beyond Two Dimensions”

 In "Beyond Two Dimensions," Varoudis and
 Psarra expanded the scope of spatial visibility
 analysis into the three-dimensional realm. Their
 approach underscored the complexity and potential
 of 3D spatial analysis, particularly in multi-level
 architectural environments. However,
 acknowledging the general predominance of 2D
 floor plans in architectural and design work, I opted
 to retain a 2D approach for broader practicality and
 accessibility.

 The intricate visibility patterns captured in
 their 3D models are depicted in the figures above.
 As you can see, spacial visibility is computed based
 on staggered, non-random nodes. These nodes
 occupy places in three dimensional space, and are
 colored based on their visibility – red being most
 visible.

 Project Divergence:

 This project represents a significant
 divergence from these foundational studies by
 shifting the focus to wall visibility, an aspect often
 overlooked in traditional visibility analysis.
 Employing advanced computational geometry
 techniques, my method emphasizes the
 optimization of art placement, enriching the
 aesthetic and functional value of architectural
 spaces. This approach moves beyond conventional
 visibility graph techniques, offering a
 geometry-driven, innovative perspective on spatial
 visibility and its application in art placement within
 environments – museums and homes in particular.
 The program is designed to take in an input of
 2-dimensional floor plan data, the output a
 heatmapping of viable wall space.

 Implementation

 The computational process for this project can be
 divided into four main steps:

 1. Minkowski Sum of Input Floor Plan:

 The first step involves taking the Minkowski
 sum of the input floor plan with a small square,
 adding a border around each wall. This border is
 crucial for displaying the heatmap in later stages.

 See the figures above for the before (left)
 and after (right) of the Minkowski sum step, as it
 takes the input floor plan and adds a buffer around
 it to create a thicker area to display the heat map
 upon. This sum will then be segmented and
 colored, and the input floor plan will be overlaid to
 allow for easy interpretation of the results.

 1.1: Bugs and Limitations

 The reasoning behind the small square is
 that it creates a fairly consistent and simple box
 around the input floor plan. I had attempted to use
 other shapes (a star and circle), but they created
 difficulties with regard to the result map and
 overcomplicated the shape of the final sum. More
 shapes could be explored, but through my trial and
 error, I found that the square gave the best results.

 2. Constrained Delaunay Triangulation:

 This Minkowski sum from step one is then
 triangulated via the Delaunay Triangulation
 algorithm. The constraints allow for marking of the
 appropriate faces related to the wallspace (yellow)
 in the diagram, so that excess triangles
 representing walkable floor space can be ignored.
 This can be seen in the associated images, where
 yellow represents heatmap area, and white is empty
 room.

 The triangulation process is enhanced with
 a user-defined "precision" argument. This
 parameter controls the triangulation density, with a
 default value of 0 leading to standard triangulation
 and higher values increasing triangle numbers. The
 improved strategy involves subdividing edges of the
 sum for each precision level, which effectively
 increases triangle counts while maintaining
 visibility integrity. Refer to the figure above for
 precision 0 (left) and 1 (right) triangulation visuals.
 As you can see, the triangle count is multiplied
 considerably.

 2.1: Bugs and Limitations

 When considering implementation for the
 precision variable, I had attempted a number of
 other techniques. In order to create meaningful
 triangles, they must have at least two points on the
 edge of viable wall-space, as two points must be
 visible to a person to deem it a visible chunk of wall.
 My initial attempt at created more triangles
 involved cutting each triangle into four triangles, in
 a Serpinski pattern. This, however, resulted in one
 triangle encapsulated by three triangles – thus it
 was impossible for that internal triangle to be
 visible and resulted in useless triangles.

 In order to mitigate this, the precision
 parameter instead designates the number of excess
 points to add to an edge. That is, for each increase
 in precision, each edge of the Minkowski sum is
 doubled (by adding and connecting the midpoint to
 the source and target vertex of each edge). This
 results in more triangles, which – most importantly
 – still border the edge of the heatmap.

 3. Placement of 'People':

 Random two-dimensional points,
 representing 'people', are placed within the open
 floor space. The placement adheres to either white
 noise or blue noise patterns, based on user input.
 White noise is purely randomized noise, wherein
 the x and y coordinates are fully random when
 placing the point. Blue noise is the same, except it
 restricts point placement by ensuring each new
 point is at least a set distance away from others.

 Above is a comparison on white noise (left)
 and blue noise (right) distributions in an example
 floor plan. As you can see, the white noise results in
 clusters (circled), which are unrealistic for
 simulating a crowd of people. This overlapping,
 implying individuals occupying the same physical
 space, is impractical and not representative of
 real-world scenarios. Blue noise still allows for
 randomized placement of individuals, but within a
 certain distance (epsilon) that designates the
 minimum space between two people. This “socially
 distanced” model more accurately mimics the
 placement of people in real life.

 3.1: Bugs and Limitations

 In order to accurately distance people, an
 arbitrary constant of 0.1 (correlating to 0.1 meters
 based on the scale of the floor plans) was deemed
 an appropriate minimum spacing between
 individuals – not exactly comfortable, but it can
 emulate a crowded and busy space quite well.

 While epsilon could be an input argument,
 this led to infinite looping in testing. If you
 designate epsilon to be too high of a number, and
 ask it to insert a high enough number of people,
 then it can fully cover the useable space available
 and leave no room left to place the remaining
 points. This can be fixed by instead replacing the
 people and epsilon inputs with a density input, but
 for the sake of testing and exploring various results
 it was simpler to control for epsilon and allow users
 to specify the number of people instead.

 4. Visibility Calculation and Heatmap Generation:

 Each person's viewpoint is analyzed to
 determine visible space. For every point in the

 people list, it is checking for visibility against each
 triangle. For a single triangle, it checks if each
 vertex is visible. That triangle is deemed visible if at
 least two of the three vertices are visible. When
 checking visibility of a vertex, a line segment is
 created between the person and the vertex. If the
 segment does not intersect any lines on the input
 floor plan, then line of sight is established.

 The visibility score of each triangle is then
 normalized and used to generate a heatmap,
 coloring triangles from green (highly visible) to red
 (low visibility) with non-visible triangles colored in
 black. This heatmap (above) guides the optimal
 placement of art based on how many people can see
 a given wall.

 During computation, these scores are stored
 in a map, mapping each triangle’s Face Index in the
 surface mesh to a float (score). Score will go up a
 single point for each person that can see the
 triangle, and a maximum, minimum, and average
 score is computed during the process.

 4.1: Troubleshooting

 Some apparent “issues” can be seen with the
 output graph. Specifically, that triangles can cross
 through an entire wall segment – the concern here
 being the possibility for false positives. However,
 this is a non-issue. Since two vertices must be
 visible, a triangle is green only if its visible edge can
 be seen. Thus, when interpreting the results, one
 can ignore the skinny point that extends from the
 triangle across a wall. Understandably, this is not
 ideal and can be improved upon. I explored a
 possible solution regarding intermediate points
 within the wall-space, but these calculated spots
 weren’t always accurate. Another possible avenue to
 remedy this could involve tossing out triangulation
 all together in favor of say voronoi diagrams – but

 the decision to use triangles simply came down to
 preference.

 It is a concern that exterior walls are visible
 as well. This is due to the placement of people,
 where some make it outside the walls. In testing, I
 made some attempts at remedying this – but
 ultimately deemed trivial for the time being.

 Technology

 This program was written in C++,
 leveraging CGALs draw function to display the
 results.

 ● CGAL’s Polygon 2 was utilized to represent the
 input floor plan.

 ● Polygon 2 with holes was used to generate hte
 Minkowski sum

 ● A Constrained Delaunay Triangulation
 datastructure was then created from the sum.

 ● A surface mesh data structure was then used to
 display the triangles in color.

 Results

 The results yielded from this program were quite
 promising, and displayed exactly what I had
 intended it to do. There is a sizeable variance on the
 output given the different parameters and
 arguments for the program, as well as the nature of
 randomization. I will detail a few of the most
 significant, and discuss the pros and cons of each,
 as well as their accuracy and usefulness.

 The Precision Argument

 Let us discuss the results with regard to change in
 the precision variable:

 This figure (above) displays the results for
 two runsusing 100 people placed over white noise,
 with two different levels of precision. The results

 for a precision level of 0 (left), or no further
 triangulation, can drastically oversimplify the room
 and give very uninformative results.

 Using a preciiosn level of 2 (right) gives
 much more specific results. The result is segmented
 further and thus is more informative and specific.

 noise people precision max vis min vis avg vis

 white 100 0 2 77 30.24

 white 100 1 2 76 32.22

 white 100 2 2 78 33.50

 In the table above, which shows the varying
 outputs among these results, it can be gleaned that
 the results are approximately the same. However,
 as we know from the ouput, higher precision results
 in more accurate results, and it can be assumed that
 the average visibility is more accurate for higher
 levels of precision. Note that the numbers are
 normalized to a visibility%, or the percentage of
 people simulated that can see a given triangle.

 Altering the level of precision allows for
 more specificity in the resulting heatmap, giving
 more informative and fine-tuned answers.
 Accordingly, for the example output figures above,
 it would be optimal to place art in the center
 (green) area of this room. While they all indicate
 this, the higher precision output shows a more
 highly localized and pinpointed result. As it is clear
 the higher precision level is better, let us control
 our precision to 2 for the remaining results.

 The People Argument

 This figure shows the importance of the
 “people” variable. While we are using blue noise
 and precision level two, it only represents visibility

 from three individuals. Due to the nature of
 randomization, such a small sample size results in
 very skewed results. As such, for optimal coverage,
 it is desirable to use a large number of people.

 Strong Results

 Testing for the usefulness of blue noise over
 white noise can only be shown in theory, as the
 resultant output is nearly indiscernable, and only
 the numerical data is altered. However, as blue
 noise is more accurate to the placement of people in
 theory, then I’ve deemed it more useful in making
 accurate and ultimately better results.

 Thus, as discussed, a more accurate and
 useful result can be achieved by maximizing the
 precision variable, maximizing the number people
 within a tolerable range given an epsilon of 0.1, and
 placing them via blue noise.

 Above is a theoretically optimized result for
 a classroom floor plan – generated with precision
 level two, placing 400 people via blue noise. An
 interesting thing to note is that, given the simple
 geometry of the classroom, most walls in the larger
 area are approximately equally viable (76.5%). In
 this scenario, a possible extension to mitigate this
 and increase the usefulness of the program would
 be to overlay the normal scores of each

 Conclusions

 In summary, this project took about a three
 weeks of on and off work. The trajectory of the work
 changed multiple times, as I researched various
 possible technologies to achieve what I wanted. The
 results are quite promising, and offer exactly what I

 wanted them to, but that is not to say they are
 perfect by any means.

 My decision to use Minkowski sums to
 create a buffer is not something that has been done
 in this specific type of visualization graphing.
 Furthermore, as previously mentioned, the use of
 triangulation of voronoi diagrams was an equally
 interesting decision. As such – due to my
 unorthodox approach – there are several avenues
 for improvement and future work in this field.

 Future Work

 Usability

 A core focus of this project was usability.
 The simplicity of using 2D floor plans allows for
 quicker input and results. This decision was made
 based on the accessibility of modern floor plans to
 the public, promoting the use of this software over
 one that considers three-dimensional data input.
 This leads into the first possible extension, the
 interpretation of floor plan imagery for more
 efficient computation. That is, the ability to upload
 an image of your floor plan so as to avoid manual
 input. Incorporate image scanning would yield way
 more accurate input data as well, not to mention be
 more efficient use.

 Higher Dimensions

 As referenced in the architecture paper by
 Varoudis and Parra on higher dimensional space
 analysis, 3-dimensional viewpoint calculations can
 prove quite helpful for interpreting visibility. This
 extension would allow for a number of things,
 namely higher accuracy, precision, and more
 realistic viewpoint simulation. By rendering in
 three dimensions, certain parts of a wallspace
 which may be obscured at one height level, may not
 be at another. This cannot be accounted for in a
 two-dimensional model. However, as previously
 stated, 3D floorplan data is not readily available.

 Optimization

 Sticking with the current implementation, it
 would be interesting to see an alternative approach

 involving different noise types, and different
 segmentations for heatmap generation. It is also
 possible to make use of raw pixel data instead of
 triangles. This would lead to a higher computation
 cost, but ultimately more fine-tuned results. This
 approach is inspired from the work of Turner et. al,
 where pixelated data provides highly accurate and
 localized visibility data.

 Wrapping Up

 In conclusion, this project offers a new approach to
 art placement in architectural spaces, utilizing
 computational geometry. By integrating Minkowski
 sums, Constrained Delaunay Triangulation, and
 visibility calculations, this paper provides an
 effective method for improving art visibility. This
 work bridges a gap in spatial analysis, suggesting
 potential areas for further development, such as
 three-dimensional analysis and automated data
 input. The project melds computational techniques
 with architectural design, contributing useful
 insights and tools for enhancing aesthetic
 experiences in built environments.

 Sources & References

 Turner, Alasdair, et al. “From isovists to visibility
 graphs: a methodology for the analysis of architectural
 space.” UCL Discovery ,
 https://discovery.ucl.ac.uk/id/eprint/160/1/turner-doxa
 -osullivan-penn-2001.pdf. Accessed 12 December 2023.

 Varoudis, T., and S. Parra. “Beyond two dimensions:
 Architecture through three-dimensional visibility graph
 analysis.” Semantic Scholar , 27 August 2014,
 https://www.semanticscholar.org/paper/Beyond-two-di
 mensions%3A-Architecture-through-graph-Varoudis-Ps
 arra/df2b16284e04d22a1bd90850ade192f14758cdc5.
 Accessed 12 December 2023.

 Muratori, Casey. “The Color of Noise.” Casey Muratori ,
 23 May 2014, https://caseymuratori.com/blog_0010.
 Accessed 12 December 2023.

 Demofox. “Generating Blue Noise Sample Points With
 Mitchell's Best Candidate Algorithm.” The blog at the
 bottom of the sea , 20 October 2017,
 https://blog.demofox.org/2017/10/20/generating-blue-
 noise-sample-points-with-mitchells-best-candidate-algo
 rithm/. Accessed 12 December 2023.

